Activation of Water. 3. Oxidative Addition of Water to Rhodium(I) Hydrido Compounds and Application as Catalyst for Deuteration of Aromatic Hydrocarbons and Hydrogen with D_2O

TOSHIKATSU YOSHIDA, TAMON OKANO, KOZO SAITO and SEI OTSUKA

Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan 560

Received October 5, 1979

The metal-assisted H-D exchange reaction of aromatic hydrocarbons has received considerable interest because it implies activation of C-H bond by metal [1]. Generally D_2 is employed as deuterium source. Metal complexes, e.g. $RhCl_3$ [2] and $PtCl_4^2$ [3], were reported to be active in acidic media for the exchange with D₂O. Recently we reported oxidative addition of water to PtL_3 (L = $P(i-Pr)_3$, PEt_3) to generate the hydrido hydroxo species HPtOH which serves as a potent catalyst for H-D exchange between D_2O and aliphatic hydrogens attached to the α -carbon atoms of carbonyl compounds or α -olefinic, allylic, and aldehydic hydrogens of α , β -unsaturated carbonyl compounds [4]. However, the PtL₃/D₂O system was incapable of exchanging aromatic hydrogens. Rh(I) hydrides, $RhH[P(i-Pr)_3]_3$ (*I*) and Rh_2H_2 - $(\mu-N_2)[P(c-C_6H_{11})_3]_4$ (II) [5] were found much more versatile than the PtL_3/H_2O system as reported here.

Oxidative addition of H₂O to *I* took place at room temperature in pyridine to give {RhH₂(pyridine)₂-[P(i-Pr)₃]₂}OH(*III*) [Rh-H, δ -20.3(q), J(H-Rh) = J(H-P) = 16.8 Hz; CH₃, δ 1.08(q), ³J(H-P) + ⁵J(H-P) = 12.8 Hz, J(H-H) = 6.4 Hz]. Although *III* is stable in aqueous pyridine, a facile reductive elimination of H₂O occurs in dry solvent to regenerate *I*, indicating reversibility of H₂O addition. The formation of *III* was confirmed by isolation of the BPh₄ salt (ν (Rh-H) 2076 and 2112 cm⁻¹) as colorless crystals. A similar addition of H₂O to *II* in pyridine followed by metathesis reaction with NaBPh₄ gave {RhH₂(pyridine)₂[P(c-C₆H₁₁)₃]₂}BPh₄ (ν (Rh-H) 2005 and 2020 cm⁻¹).

When D_2O was employed in the above reaction, a facile deuteration of pyridine was observed. Thus, a gentle heating (80 °C, 20 h) of a mixture of I(0.1 mmol), pyridine(5.4 mmol), and $D_2O(27 \text{ mmol})$ gave deuterated pyridine without positional preference, deuteration at 2,6-, 3,5-, and 4-positions being 62, 59, and 58%, respectively. Compound II also showed a comparable activity.

A wide range of aromatic compounds, e.g. PhCH₃, PhOCH₃, PhF, and C₁₀H₈ were deuterated with D₂O by the catalysis with *I*. *I* is more active than the system RhCl₃-CH₃CO₂D-D₂O [2]. Remarkably, deuterium incorporation into the CH₃ group was observed for PhCH₃ and PhOCH₃ (Table I). This is in sharp contrast to $(\eta$ -C₅H₅)₂NbH₃ and IrH₅-(PPhMe₂)₂ which are inactive for deuteration of the corresponding CH₃ hydrogens with D₂ [6].

TABLE I. H–D Exchange of PhX with D_2O^a Deuteration (%).

x	m-H		<i>о, р-</i> Н	СН₃
N(CH ₃) ₂	65		32	0
OCH3	54		54	48
CH ₃		50		12
COCH3	33 ^b		5 °	61
F	53		54	

^aPhX(5 mmol)–D₂O(25 mmol)–I(0.1 mmol) in THF (3 ml) at 80 °C for 20 h. ^bm, p-H. ^co-H.

The faster deuteration of PhF compared to PhOCH₃ [relative rate; o, p-H(PhF) 9.8, m-H(PhF) 5.6, o, p-H(PhOCH₃) 1.9, m-H(PhOCH₃) 5.0, CH₃O 1.0] is consistent with a mechanism involving oxidative addition of ArH to I as rate-determining step [6]. Although formation of the σ -aryl species C₆H₄-FRh was not detected in the mixture of I and PhF, an adduct $Rh_2(C_6F_5)_2(N_2)[P(c-C_6H_{11})_3]_4 \cdot 2C_6H_5$ -CH₃ (IV) [¹⁹F nmr (benzene-d₆, upfield from CFCl₃) 103.4 (2F, m) and 165.0 (3F, m)] was obtained as yellow crystals by treating II with C_6F_5H in n-hexane at room temperature under N2. The ir spectrum shows a band assignable to $\nu(N\equiv N)$ at 2130 cm⁻¹. This is probably due to a partial dissociation, $IV \rightleftharpoons$ $Rh(N_2)(C_6F_5)L_2 + Rh(C_6F_5)L_2$ (L = P(c-C_6H_{11})_3). A similar dissociation was found for $Rh_2H_2(\mu-N_2)L_2$ $(L = P(i-Pr)_3, P(c-C_6H_{11})_3)$ [7]. Oxidative addition of PhF to a low-valent transition metal compound has a precedent [8]. The coordinated dinitrogen in IV is readily replaced by L(CO or PhCN) to give quantitatively $Rh(C_6F_5)L[P(c-C_6H_{11})_3]_2$ ($\nu(CO)$ 1945, $\nu(CN)$ 2180 cm⁻¹) as yellow crystals.

The results suggest that the H–D exchange of aromatic hydrogens with D_2O catalyzed by *I* proceeds via initial formation of RhD[P(i-Pr)₃]₃ (*V*) through addition of D_2O to *I* followed by reductive elimination of DHO from the adduct {RhDH(pyridine)₂[P(i-Pr)₃]₂}OD. The oxidative addition of ArH to *V* and subsequent elimination of ArD from RhHD-(Ar)[P(i-Pr)₃]₂ complete a catalytic cycle (*Scheme I*). The reversible oxidative addition of ArH to *I* also accounts for hydrogen scrambling between aromatic hydrocarbons catalyzed by *I*. Thus, a gentle heating (80 °C) of a mixture of *I* (0.1 mmol), $C_{10}H_8$ (5 mmol), and C_6D_6 (25 mmol) gave per-deuterated naphthalene, deuteration at α - and β -positions being 33 and 77%, respectively.

 $L = P(i-Pr)_3$, S = solvent

Scheme I.

(auxiliary P(i-Pr)₃ ligands are omitted for clarity)

Scheme II.

The exchange of methyl hydrogens of $PhCH_3$ and $PhOCH_3$, may be explained by double oxidative addition leading to four- and five-membered ring inter-

mediates, $H\dot{R}hCH_2 \cdot o \cdot \dot{C}_6H_4$ and $H\dot{R}hCH_2O \cdot o \cdot \dot{C}_6H_4$, respectively (*Scheme II*). Consistent with this postulate is the faster rate of exchange of methyl hydrogens of PhOCH₃, which could occur through a five-membered ring intermediate, than that of PhCH₃ which requires a four-membered ring.

H-D exchange of H₂ with D₂O can also be catalyzed by I and II. Thus, a reaction (80 °C, 20 h) of D₂O (0.11 mol) and H₂ (0.45 mol, 100 atm) in presence of II (0.1 mmol) gave 75% H₂O, 22% DHO, and 3% D₂O. A similar result was obtained by catalysis of I. The H-D exchange of H₂ with D₂O must involve RhH₂D species (Scheme I). In fact, the trigonal bipyramidal trihydride RhH₃L₂ (L = P(i-Pr)₃, P(c-C₆H₁₁)₃), [7] was isolated by treating I and II with H₂.

The catalytic cycles (Scheme I) are supported by the observation that I also can catalyze H-D exchange of benzene with D₂ under ambient conditions.

References

- 1 G. W. Parshall, Accounts Chem. Res., 8, 113 (1975). 2 M. R. Blake, J. L. Garnett, I. K. Gregor, W. Hannan, K.
- Hoa and M. A. Long, *Chem. Comm.*, 930 (1975).
- 3 J. L. Garnett, Catal. Rev., 5, 229 (1971).
- 4 Part 2. T. Yoshida, T. Matsuda, T. Okana, T. Kitani and S. Otsuka, J. Am. Chem. Soc., 101, 2027 (1979).
- 5 T. Yoshida, T. Okana and S. Otsuka, Chem. Comm., 855 (1978).
- 6 U. Klabunde and G. W. Parshall, J. Am. Chem. Soc., 94, 9081 (1972); E. K. Barefield, G. W. Parshall and F. N. Tebbe, *ibid.*, 92, 5234 (1970).
- 7 T. Yoshida, T. Okano, D. L. Thorn, T. H. Tulip, S. Otsuka and J. A. Ibers, J. Organometal. Chem., in press.
- 8 J. Fornies, M. Green, J. L. Spencer and F. G. A. Stone, J. Chem. Soc. Dalton, 1006 (1977).